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Abstract
We present a family of algorithms for online portfolio selection in the presence of returns and

transaction costs which may both vary adversarially over time, obtaining log-returns competitive with
the best constant rebalanced portfolio in hindsight. Building upon techniques for online optimization
with memory, our algorithms allow reward functions to depend on both current and previous holdings
in a nonparametric manner, yielding the first no-regret portfolio selection algorithms which allow for
arbitrary and potentially non-convex transaction cost expressions rather than only fixed percentage fees.
We show that the optimal O(log T ) rate is attainable under only a mild monotonicity assumption, albeit
via a computationally inefficient approach. When given access to an oracle for non-convex optimization,
we obtain efficient O(

√
T ) regret under arbitrary costs as an application of a novel algorithm for online

non-convex optimization with memory. We identify a number of additional cases in which either O(
√
T )

or O(log T ) regret is attainable efficiently without an oracle, and we give negative results justifying our
structural and computational assumptions. We show experimentally that our techniques enable consistent
improvement over existing no-regret algorithms, across a range of portfolio sizes, when transaction costs
are simulated from market data according to standard trade impact models.

1 Introduction
In financial portfolio optimization, the unpredictable nature of price movements motivates the design of
algorithms which achieve strong performance guarantees without making statistical assumptions on asset
returns. The “universal portfolio” setting introduced by Cover [1991] considers the problem of competing with
the returns obtained by the best constant rebalanced portfolio in hindsight over a period of T rounds. This
setting can also be formulated as an instance of online convex optimization (OCO) over log-returns, where
algorithms which minimize regret over per-round concave reward functions have been studied extensively
(see Li and Hoi [2013] for a broad overview, and Van Erven et al. [2020] for a recent discussion of optimal
rates). An important consideration in portfolio optimization is the role of transaction costs; there is some
prior work extending this setting to account for transaction costs [Blum and Kalai, 1997, Györfi and Vajda,
2008, Vittori et al., 2020, Guo et al., 2021], but to date these works consider only fixed percentage fee models
or approximations thereof. However, for large portfolios managed by institutional investors, the dominant
contributing factor to transaction costs is typically the market impact of trading rather than broker fees; these
impact costs are affected by trade volume as well as market conditions, and may change unpredictably across
time, assets, and portfolio sizes [Almgren et al., 2005, Park et al., 2016, Qiao et al., 2023, Li et al., 2023].
As such, existing no-regret methods are insufficient to properly account for transaction costs in portfolio
optimization for large institutions.

In this paper, we give the first (to our knowledge) algorithms for online portfolio selection which obtain
regret guarantees in the presence of adversarially changing and nonparametric transaction costs. We formalize
this problem via the framework of online (non-convex) optimization with memory, wherein objective functions
can depend on multiple prior actions [Arora et al., 2012, Anava et al., 2015], thus enabling a unifying
perspective for analyzing several algorithms differing their in computational requirements and structural
assumptions. When transaction costs are present, the total return of a portfolio selection strategy depends
not only on returns of the assets held and the costs of exploration, but also the costs of rebalancing a
portfolio when aiming to maintain consistent percentage holdings (such as in the case of many ETFs), which
can vary across assets and holding volumes due to volatility or liquidity. Regret minimization algorithms
with continuous objectives often bear some resemblance to gradient-based optimization; at a high level, our
approach to accommodating adversarial transaction costs in our algorithms is to incorporate appropriately
calibrated gradient penalty terms for the rebalancing cost of the current portfolio at each step. Taken as a
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whole, our results show that time-varying nonparametric transaction costs can be accommodated in many
contexts which previously only accommodated fixed proportional costs, with minimal tradeoffs.

1.1 Our Contributions
Problem formulation. We show that online portfolio selection over n assets with adversarial transaction
costs can be formulated as an instance of online non-convex optimization with memory, where the per-round
objective decomposes into standard log-return as well as an additive term corresponding to log-cost.

Optimal rates. We give an algorithm inspired by the approaches from Cover [1991] and Blum and Kalai
[1997], adapted to the setting of memory-dependent and non-parametric rewards; this algorithm obtains
regret O(n log T ) in the presence of adversarial transaction costs under a mild monotonicity assumption,
which is optimal even in the absence of transaction costs, but is not computationally efficient.

Oracle-efficient methods. We give an O(
√
T ) regret algorithm for online non-convex optimization with

memory, which is efficient when given access to an oracle for offline non-convex optimization. This can be
applied directly to our setting to yield an equivalent bound for arbitrary Lipschitz transaction costs.

Improved rates and computation. We identify a number of additional conditions under which either
computational efficiency or rates of regret can be improved when adversarial transaction costs are present.
We show that efficient O(

√
T ) regret is feasible when considering a set of time-varying investment strategies

(e.g. from a pool of financial analysts), or when joint log-returns in terms of rebalancing costs are concave. In
the latter case, rates can be improved to O(log T ) when a risk-aversion penalty for encouraging portfolio
diversity is included each round. We also highlight examples which suggest barriers to further improvements
and discuss remaining open questions.

Experimental evaluation. We conduct extensive empirical evaluation of our algorithms in comparison to
previous no-regret methods using returns and transaction costs simulated from historical S&P500 data. We
simulate time-varying transaction costs according to the model from Almgren et al. [2005], which estimates
the market impact of a given trade in terms of price volatility and intra-day trading volume (as a proportion
of market cap). We consider a range of asset subsets as well as portfolio sizes, and find that our algorithms
which incorporate time-varying transaction costs consistently outperform other baselines, even in regimes
without formal guarantees.

1.2 Related Work
Regret minimization for portfolio selection. Following the algorithm of Cover [1991], whose O(n log T )
rate was shown to be optimal by Cover and Ordentlich [1996], there has been a long line of work aiming
to design algorithms for this setting (without transaction costs) which improve along various lines, most
notably in terms of computational efficiency. Whereas the computation of Cover [1991] scales exponentially
in the number of assets, subsequent algorithms [Kalai and Vempala, 2000, Hazan et al., 2007] have improved
this to a total computation time which is polynomial in all parameters while maintaining comparable regret
guarantees, recently culminating in an algorithm from Jézéquel et al. [2022] which obtains near-optimal regret
O(d log(T + d)) with Õ(d2T 2 + d3T ) total computation. There are also a number of algorithms [Helmbold
et al., 1998, Orseau et al., 2019] which obtain total computation O(dT ) (and often improved empirical
performance) in exchange for a regret bound of only Õ(

√
T ). These results are surveyed in Li and Hoi [2013]

and Van Erven et al. [2020].
A frequent consideration for online portfolio selection is whether reward gradients must be bounded

(corresponding to e.g. strictly positive and finite returns), as is assumed by several of the aforementioned
works. We make this assumption in Sections 4 and 5, but do not require it in Section 3.
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Online portfolios with transaction costs. The consideration of transaction costs in the online portfolio
setting was initiated in Blum and Kalai [1997], where the approach from Cover [1991] was extended to
accommodate fixed percentage transaction fees with a similar rate of regret. An algorithm from Uziel and
El-Yaniv [2020] obtains O(

√
T ) regret with respect to a set of expert portfolio strategies in the proportional cost

model; efficient algorithms with O(
√
T ) regret over constant rebalanced portfolios are given by Das et al. [2013]

and Vittori et al. [2020], yet rather than direct proportional costs, approximations ct(xt,xt−1) ∝ ∥xt −xt−1∥1
are used, which ignore the shift in holdings due to returns rt and whose guarantees only hold directly when
each daily return is considerably close to 1. Beyond the context of adversarial regret minimization, there are
a number of algorithms in the proportional cost model [Sousa Lobo et al., 2007, Györfi and Vajda, 2008, Shen
et al., 2014, Bin Li and Hoi, 2018, Guo et al., 2021, Tsang et al., 2022] whose performance is evaluated either
empirically or with distributional assumptions over returns. To our knowledge, there are no prior algorithms
which obtain sublinear regret guarantees over constant rebabalanced portfolios with either non-proportional
or time-varying transaction costs, even when computational efficiency is not a concern.

Other approaches to transaction costs. Many aspects of portfolio optimization are widely studied
beyond the context of adversarial regret minimization, often under the assumption of stochastic returns and
mean-variance performance criteria. Of particular relevance to our work is the literature on transaction cost
modeling, where theoretical and data-driven approaches are given for estimating the market impact of large
trades [Almgren and Chriss, 2000, Almgren et al., 2005, Park et al., 2016, Benzaquen and Bouchaud, 2017, Li
et al., 2023].

OCO with memory and oracle methods. The framework of online convex optimization with memory
[Arora et al., 2012, Anava et al., 2015], which has been applied to problems ranging from statistical arbitrage
[Anava et al., 2015] to online control [Agarwal et al., 2019, Gradu et al., 2020]. To date, these approaches
consider only convex (surrogate) losses. A parallel line of work has considered online non-convex optimization
via oracles, which culminated in an optimal O(

√
T ) algorithm from Suggala and Netrapalli [2019]. We

leverage both of these techniques in Section 4, obtaining the first algorithm no-regret algorithm for online
non-convex optimization with memory, which we then apply to our portfolio selection problem.

1.3 Notation
We use ∥·∥ to indicate the ℓ1 norm unless denoted otherwise, and we let ∆(n) denote the simplex over n
items. We use un to denote the uniform distribution and e.g. 1 for the all-ones vector. ⊗ denotes elementwise
multiplication. O(·) is the standard asymptotic notation, and Õ(·) hides polylogarithmic terms.

2 Setting
In the classic setting of online portfolio selection from Cover [1991], at each round t ∈ [T ] we choose some
allocation xt ∈ ∆(n) over a set of given a set of n assets. An adversary chooses per-round price vectors
p0, . . . ,pT ∈ Rn

+, with the return vectors rt then given by rt(i) =
pt(i)

pt−1(i)
for each asset. We begin with total

wealth W0 = 1 at t = 0, and in the absence of transaction costs, our total wealth after round T is

WT =

T∏
t=1

r⊤t xt .

This can be cast as an instance of online (convex) optimization by minimizing regret over log returns

Regno-cost(T ) = max
x∗∈∆(n)

T∑
t=1

log(r⊤t x∗)−
T∑

t=1

log(r⊤t xt)

with respect to the the best constant rebalanced portfolio x∗ ∈ ∆(n), i.e. the trading strategy where the
portfolio is rebalanced to x∗ after each round.
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We augment this to allow for adversarial transaction costs in each round, given by functions ct of both
current and previous holdings. as well as previous returns. Following a round t − 1 where we play the
allocation xt−1 and observe returns rt−1, let xt be our target portfolio for round t. Upon updating our
holdings to xt, we incur a cost ct(xt,xt−1) per unit of wealth in our portfolio, where the function ct may
implicitly depend on rt−1 as well as other adversarially determined features related to market conditions or
earlier returns, and need not satisfy a particular functional form, but we assume it is C-Lipschitz in both
arguments. We denote our wealth under the portfolio xt (prior to observing returns rt) by Ŵt, where we
have that

Ŵt

Wt−1
= 1− ct(xt,xt−1).

Then, for a sequence of allocations x0, . . . ,xT our resulting wealth is given by

WT =

T∏
t=1

r⊤t xt ·(1− ct(xt,xt−1))

and our regret (in log-return scale) with respect to the best constant rebalanced portfolio x∗ is given by

Reg(T ) = max
x∗∈∆(n)

T∑
t=1

log(r⊤t x∗) + log(1− ct(x
∗,x∗))

−
T∑

t=1

log(r⊤t xt) + log(1− ct(xt,xt−1))

with x0 = un. Upon the inclusion of transaction costs, our per-round log-return objectives may no longer be
convex, and their dependence on multiple timesteps precludes the direct application of OCO algorithms. Our
goal in this setting is to design algorithms which minimize this regret objective when both returns rt and
transaction costs ct may be chosen adversarially.

3 Logarithmic Regret with Adversarial Transaction Costs
Here, we give our first algorithm which obtains the optimal logarithmic regret rate in terms of T . We make
use of the following assumption on transaction costs, which enforces that price impact costs must increase
monotonically in transaction size.

Assumption 1 (Cost Monotonicity). Given a function ct, the total transaction cost can be decomposed into
per-asset costs (which are zero if no trading occurs), and the proportional cost-per-unit-traded (in terms of
effective price) of an asset is monotonically increasing in the trade size (for buying or selling).

We view this restriction as natural and quite mild; it yields similar properties to the set of assumptions
made in Blum and Kalai [1997], and describes typical market behavior in which there is increasing demand
to buy (or sell) at lower (higher) price levels. When this holds, we can simultaneously conduct rebalancing
for many fractional portfolios and ensure that their observed costs are no larger than they would be for their
non-fractional counterparts.

Algorithm 1 Universal Portfolios with Memory (UP-M)
Input: returns rt, costs ct(xt,xt−1) for t ∈ [T ]
Initialize K = O(Tn) portfolios x(k) uniformly distributed over ∆(n), allocate wealth W0

K to each
for t = 1 to T do

Observe returns rt, rebalance each fractional portfolio r⊤t ⊗x(k) to x(k), scheduling trades to yield
proportional costs at most 1− ct(x

(k),x(k))
end for
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Theorem 1. For a cost function ct, For a sequence of returns rt ∈ Rn
+ and C-Lipschitz cost functions ct

satisfying Assumption 1, UP-M obtains regret O(n log T ) with respect to the log-return of the best constant
rebalanced portfolio.

Proof Sketch. Given a grid of K = O(Tn) portfolios, for any x∗ in ∆(n) we will have some x(k) such that∥∥x∗ −x(k)
∥∥ ≤ ϵ, for ϵ = 1/(2C + 1)T . Consider the total returns of constant rebalanced portfolios x∗ and an

ϵ-close x(k), which are given by:

W ∗
T =

∏
t

r⊤t x∗ ·(1− ct(x
∗,x∗));

W
(k)
T =

∏
t

r⊤t x(k) ·(1− ct(x
(k),x(k))).

As each ct is C-Lipschitz, we then have that:

W
(k)
T ≥ W ∗

T (1− (2C + 1)ϵ)T ≥ e−1 ·W ∗
T .

Using Assumption 1, we can show that it suffices to consider ct(x
(k),x(k)) as an upper bound for the

transaction cost incurred by each fractional portfolio individually. We discuss this analysis and our trade
scheduling approach in the appendix. We then have that our algorithm’s total return is at least:

WUP-M
T ≥

∑
k∈[K]

W
(k)
T

K
≥ max

k∈[K]

W
(k)
T

K

and so

log(W ∗
T ) ≤ log(WUP-M

T ) +O(n log T ).

This rate is optimal even in the absence of transaction costs, as shown by Cover and Ordentlich [1996].
The algorithms of Cover [1991] and Blum and Kalai [1997] involve computing ratios of integrals at each step
that express the limit of increasing the number of fractional portfolios, whose analysis has been has related to
the exp-concavity of rewards by subsequent work [Hazan et al., 2007]. Perhaps surprisingly, our approach here
does not even require that rewards be concave, which may not be the case even for proportional transaction
costs (as we discuss in Section 5). While our computational and space complexity scales exponentially in the
number of assets, we find experimentally in Section 6 that taking K substantially smaller is often sufficient
when simulating returns and transaction costs from historical data.

4 Oracle-Efficient Portfolio Selection
Here we give algorithms for adversarial transaction which are computationally efficient when given access to
an offline oracle for non-convex optimization, yet at the cost of only obtaining O(

√
T ) regret. Our approach

is to extend the analysis of non-convex Follow the Perturbed Leader from Suggala and Netrapalli [2019] to
the setting of optimization with memory, wherein losses may depend on m ≥ 1 additional previous actions,
which we then use to optimize over constant rebalanced portfolios.

4.1 Non-Convex FTPL with Memory
We say that Oα,β is an (α, β)-approximate optimization oracle if, when given a function f : X → R and a
vector σ ∈ Rd, it returns a point x∗ ∈ X satisfying

f(x∗)− ⟨σ,x∗⟩ ≤ inf
x∈X

f(x)− ⟨σ,x∗⟩+ α+ β ∥σ∥1 .

Given such an oracle, we show the classical FTPL algorithm from Kalai and Vempala [2005] can simultaneously
accommodate non-convexity and memory (dependence on xt, . . . ,xt−m) in our per-round objectives. Following
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Algorithm 2 FTPL with Memory (FTPL-M)
Input: Loss functions with m-step memory {ft}Tt=1, exponential distribution parameter η, approximate
optimization oracle Oα,β over ∆(n)
Choose x1, . . . ,xm ∈ X arbitrarily
for t = m to T do

Sample σt ∈ Rn
+ with each σt,i ∼ Exp(η) i.i.d

Predict xt as

xt = Oα,β

 t−1∑
j=m

fj(x, . . . ,x) + ⟨σt,x⟩


Observe loss function ft

end for

the approach of Anava et al. [2015], our analysis proceeds by considering memoryless surrogate losses
f̃t(xt, . . . ,xt) in place of the true memory-dependent losses ft(xt, . . . ,xt−m), wherein the current action xt is
included for each entry of ft, and then bounding the difference between these sets of losses.

Theorem 2. For a sequence of L-Lipschitz losses with m-round memory {ft}tt=1, and an oracle Oα,β where
α = O(

√
1/T ) and β = O(1/T ), FTPL-M obtains expected regret at most

E [Reg(T )] ≤ O
(
mn1.5

√
T
)
.

with T calls to Oα,β.

Proof Sketch. The existing analysis of FTPL can be directly applied to the surrogate losses f̃t(xt, . . . ,xt)
rather than ft(xt, . . . ,xt−m), and so the key step is to show that surrogate regret closely tracks true regret.
We accomplish this by leveraging a stability argument proved in the analysis of Suggala and Netrapalli
[2019], which gives a bound on E[∥xt −xt−1∥] in terms of η. Appropriately calibrating η yields the regret
guarantee.

For our setting of optimizing over constant-rebalanced portfolios with adversarial transaction costs, we
have m = 1 and can directly apply FTPL-M whenever our objectives are Lipschitz. We show that this holds
whenever returns are bounded within a multiplicative factor of R > 1 from 1, which generally holds true in
financial markets particularly for larger-cap assets.

Corollary 2.1. For returns rt ∈ [1/R,R]n and C-Lipschitz costs ct with value in [0, 1
2 ], FTPL-M obtains

regret bounded by O(
√
T ) with T calls to Oα,β.

5 Improving Computation and Regret
Each of our results in Sections 3 and 4 is either not computationally efficient or requires oracle access for
non-convex optimization. Here, we give a set of algorithmic results which are efficient without oracles, albeit
under alternate assumptions on our regret objectives, and which enable O(log T ) regret in certain cases. We
also provide negative examples which highlight the difficulties of both efficient regret minimization and fast
rates when transaction costs are present.

5.1 Optimizing over Experts with Transaction Costs
Here we consider a setting where our goal is to compete with a pool of S experts (who themselves also
incur transaction costs), perhaps corresponding to a pool of financial analysts whose updating investment
recommendations we are evaluating, rather than the best constant rebalanced portfolio. A similar goal is
considered by Uziel and El-Yaniv [2020] in the presence of proportional transaction costs, and in a two-
timescale model with “long-term” and “short-term” experts, where the short-term have access to additional
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market information for predicting future returns. Our model and objective is simpler, and we show that the
performance best expert can be tracked when arbitrary bounded transaction costs are present via reduction
to online prediction with switching costs [Geulen et al., 2010, Cesa-Bianchi et al., 2013, Gofer, 2014].

Theorem 3. Given a set of S experts, where each s ∈ S specifies a portfolio xs,t at each step, there is an
efficient algorithm which obtains regret O(

√
T ) with respect to the return of the best expert, given by

max
s∈S

T∑
i=1

log(r⊤t xs,t) + log(1− ct(xs,t,xs,t−1)).

Here, the difficulty of optimizing over non-convex transaction cost functions is essentially “pushed” onto
the experts, who may not optimize perfectly, and we simply need to avoid excess transaction costs from
expert switches by using any low-switching algorithm.

5.2 OGD with Memory for Concave Log-Return Objectives
For online optimization problems with m-step memory, Anava et al. [2015] show that Online Gradient Descent
obtains sublinear regret bounds whenever surrogate losses f̃t(x) = ft(x, . . . ,x) are (strongly) convex and
Lipschitz in x (fixed for all inputs). In our context, this corresponds to requiring (strongly) concave reward
objectives log(r⊤t xt) + log(1 − ct(xt,xt)) in terms of the rebalancing cost for a static portfolio. Here we
restate their algorithm and its guarantees.

Algorithm 3 OGD with Memory (OGD-M)
Input: learning rate schedule {ηt}Tt=1, loss functions with 1-step memory {ft}Tt=1

Choose x1 = x2 = un

for t = 2 to T do
Play xt and observe reward ft(xt,xt−1)

Set xt+1 = Π∆(n)

(
xt +ηt∇f̃t(xt)

)
end for

Proposition 1 (Anava et al. [2015]). OGD-M with appropriately calibrated learning rates obtains regret
O(

√
T ) for convex Lipschitz losses with constant memory, and O(log T ) for strongly convex Lipschitz losses

with constant memory.

Corollary 3.1. For any returns rt and transaction cost functions ct which yield (strongly) concave and
Lipschitz surrogate rewards f̃t(x), OGD-M obtains O(

√
T ) (or log T ) regret with respect to the best constant

rebalanced portfolio.

In Section 5.3, we give conditions under which efficient O(log T ) regret can be attained, relating to
objectives considered in mean-variance portfolio optimization.

5.3 Efficient Logarithmic Regret for Risk-Sensitive Portfolios
In mean-variance portfolio optimization, one typically assumes that returns at each step are stochastic (and
perhaps correlated) in contrast to the adversarial setting where returns can be arbitrary, yet real-world
financial markets often lie somewhere in between these regimes in practice. In particular, one could consider
returns with both stochastic and adversarial components, where correlations between stochastic components
persist over time. While negative results are known for mean-variance online learning in general [Even-Dar
et al., 2006], algorithms which directly optimize for risk-aversion are widely explored in cost-aware settings
nonetheless [Shen et al., 2014, Guo et al., 2021, Qiao et al., 2023]. As such, a natural criterion (similar to
that in [Even-Dar et al., 2006], extended to portfolio selection) is to maximize total returns in conjunction
with exogenously imposed penalty terms which encourage risk-aversion. For standard measures of portfolio
diversity such as entropy, or the variance of x⊤ Ax with some positive-definite correlation matrix A, the
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corresponding penalty term will be strongly concave. We consider the case where such a strongly concave
penalty p(x) is added to each log-return.

While algorithms for portfolio optimization generally rely on exp-concavity to obtain fast O(log T ) rates, a
key benefit of instead leveraging strong concavity when faced with transactions costs is due to its robustness
under additive composition. The per-round objective functions we obtain will be strongly convex in the
absence of transaction costs, and with sufficient curvature to often “overpower” the non-convexity introduced
by transaction costs when these costs have Lipschitz gradients, yielding a composite objective which is still
strongly concave (albeit with a weaker parameter). We first show this composition property.

Lemma 2. Suppose f(x) is µ-strongly convex and g(x) has gradients ∇g(x) which are λ-Lipschitz with
respect to the ℓ2 norm, for x ∈ ∆(n). Then, f(x) + g(x) is (µ− λ)-strongly convex whenever µ− λ > 0.

Proof. By strong convexity of f , for any x,y ∈ ∆(n),

f(y) ≥ f(x) +∇f(x)⊤(y−x) +
µ

2
∥y−x∥22 .

By the Lipschitz gradient condition on g, we also have

g(y)− g(x) ≥ ∇g(x)⊤(y−x)− λ

2
∥y−x∥22

and so

f(y) + g(y) ≥ f(x) + g(x) +∇f(x)⊤(y−x)

+
µ

2
∥y−x∥22 + (g(y)− g(x))

≥ f(x) + g(x) +∇(f(x) + g(x))⊤(y−x)

+
µ− λ

2
∥y−x∥22 ,

yielding (µ− λ)-strong convexity for f(x) + g(x).

Using this, we show that the inclusion of a risk penalty term at each round enables fast rates of regret
when using OGD-M even when rebalancing costs are non-convex, provided that the transaction cost functions
are sufficiently smooth.

Theorem 4. Suppose each cost function ct(x,x) is C-Lipschitz, has λ-Lipschitz gradients, and is at most 1
2 .

Further, suppose each round’s objective is given by log(r⊤t xt) + log(1 − ct(xt,xt−1)) + g(xt), where g is a
µ-strongly convex and G-Lipschitz risk penalty term with sufficiently large µ. Then, OGD-M obtains regret
O(log T ) with respect to the best constant-rebalanced risk-penalized portfolio.

5.4 Non-Concavity of Proportional Costs
Here we give evidence of the inherent difficulty of portfolio optimization with transaction costs by showing
that even the simple case of proportional costs above 0 can yield a non-concave objective to be maximized.
For such transactions costs, a percentage fee C is applied to the total trading volume, which is equivalent to
paying in terms of the total variation distance between portfolios and yields a cost function given each round
by

ct(xt,xt−1) =
C

2

∥∥∥∥xt −
rt−1 ⊗xt−1

r⊤t−1 xt−1

∥∥∥∥
1

for some C ∈ (0, 1]. Notably, we show that proportional transaction costs result in a non-concave objective
for log-returns even for percentage costs C arbitrarily close to 0 and daily returns arbitrarily close to 1.
Intuitively, this stems from the fact that more diversified portfolios will require larger transaction costs in
order to rebalance each round, whereas a portfolio entirely concentrated on a single asset (or a set of highly
correlated assets) will never (rarely) rebalance.
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Theorem 5. Suppose transaction costs are given by ct(xt,xt−1) =
C
2

∥∥∥xt − rt−1 ⊗xt−1

r⊤t−1 xt−1

∥∥∥
1
, i.e. a fixed percentage

is charged in terms of the total volume which must be rebalanced. For any C > 0, there is a sequence of returns
{rt}Tt=1 for which the log-return objective

∑T
t=1 log(r

⊤
t x) + log(1− ct(x,x, rt−1)) over constant rebalanced

portfolios x ∈ ∆(n) is non-concave in x.

Proof. Consider two assets a and b with returns rt = (r
(a)
t , r

(b)
t ) given by

rt =

{
(w, 1

w ), t is even
( 1
w , w), t is odd

for some w > 1, and transaction costs given by

ct(xt, xt−1) =
γ

2

∥∥∥∥xt −
rt−1 ⊗ xt−1

r⊤t−1xt−1

∥∥∥∥
for some γ ∈ (0, 1]. Let x(a) = (1, 0) be the portfolio entirely concentrated on asset a, let x(b) = (0, 1) be the
portfolio entirely concentrated on asset b, and let x(u) = ( 12 ,

1
2 ) be the uniform portfolio. For initial wealth

W0 = 1 and any even T , it is straightforward that both x(a) and x(b) result in final wealth WT = 1 for any C,
as no rebalancing ever occurs. For x(u), a per-round return r⊤t x(u) = w

2 + 1
2w is observed upon rebalancing

to x(u) from ( w2

w2+1 ,
1

w2+1 ), incurring a transaction cost of

ct(x
(u),x(u)) =

C

2

∥∥∥∥x(u) −rt−1 ⊗x(u)

r⊤t−1 x
(u)

∥∥∥∥
= C

(
w2

w2 + 1
− 1

2

)
.

For any w ∈ (1, 2+C
2−C ), defining R∗ as r⊤t x(u)(1− ct(x

(u),x(u))), we then have

R∗ =

(
w

2
+

1

2w

)(
1− C

(
w2

w2 + 1
− 1

2

))
=

1

2w

(
w2 + 1

)(
1 +

C

2
− Cw2

w2 + 1

)
=

w(2− C)

4
+

2 + C

4w
< 1

with equality holding for positive w only at 1 and 2+C
2−C (assuming C < 2). As such, the final wealth of

x(u) given by W
(u)
T =

∏T
t=1 R

∗ is strictly below 1. We have that both log(W
(u)
T ) < log(W

(a)
T ) = 0 and

log(W
(u)
T ) < log(W

(b)
T ) = 0 by monotonicity of the log function, which implies that the log-return objective is

non-concave over constant rebalanced portfolios x ∈ ∆(n). For w which is bounded away from both 1 and
2+C
2−C , and sufficiently large T , this holds even if transaction costs for rebalancing only occur in T − 1 rounds
(e.g. if we take r0 = 1).

This suggests that we likely cannot apply online convex optimization techniques to obtain efficient sublinear
regret, even in the case of proportional transaction costs, without additional assumptions. Further, even when
optimization oracles are accessible, it seems quite difficult to improve over O(

√
T ) regret when transaction

cost functions can be arbitrary: there are Ω(
√
T ) lower bounds known for smooth non-convex optimization

[Suggala and Netrapalli, 2019], and it is unlikely that UP-M or the integration-based methods from Cover
[1991] and Blum and Kalai [1997] can be simulated efficiently with bounded-precision optimization oracles
when ct can be arbitrary, as several numerical integration problems are known to be #P-complete (and thus
likely outside of NP).
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6 Experiments
We implement and simulate several of our algorithms and compare their performance to various benchmarks
using returns and transaction costs estimated from historical market data for S&P500 stocks.

Simulating transaction costs. The model of Almgren et al. [2005] gives a functional expression for
estimating the market impact and corresponding transaction cost of conducting a large trade in terms of price
volatility and liquidity relative to an asset’s market cap, with a parametric form and coefficients estimated
from historical trade-level data. We compute a representation this expression for daily transaction costs
which can be programmatically differentiated and optimized over.

Algorithms and baselines. We evaluate the following set of portfolio selection strategies:

• OGD-M with Almgren cost penalties, proportional cost penalties, and no penalties

• OGD-M with proportional cost penalties

• OGD (no penalties)

• FTPL-M with Almgren cost penalties

• UP-M with Almgren cost penalties

• Hedge for portfolios, under return rewards

• Hedge for sampling stocks, under return rewards

• Uniform constant-rebalanced portfolios

While there are indeed a wide range of other algorithms developed for portfolio selection, the bulk of the
algorithms with no-regret guarantees we have discussed resemble those considered here (up to e.g. choice of
regularizer or learning rate schedule). We conduct hyperparameter optimization over learning rates for OGD
variants, and observed that choice of regularizer has minimal impact on practical performance for our data.
Our primary aim experimentally is to evaluate the impact of incorporating transaction cost functions into
algorithms directly (when these costs determine true performance) rather than omitting or approximating
with percentage fees, and to compare behavior across qualitative classes of algorithms.

Setup and experiment details. We collect data from Yahoo! Finance for S&P500 stocks, and compute
transaction costs using the volume-dependent impact expression from Almgren et al. [2005], where we assume
rebalancing occurs over the final 45 minutes of each trading day. We run algorithms for T = 1000 days (steps)
on trials of randomly chosen subets of 20 stocks, beginning on January 1, 2010, and average across subsets.
We vary the initial wealth allocation of portfolios considered, and consider a range fixed percentage fees as
cost estimates for baseline algorithms. Additional setup details are discussed in the appendix.

Results. We measure returns as WT /W0 across values of W0, and find that incorporating transaction
penalty terms for into algorithms reliably improves performance for portfolios up to $100MM in initial assets
when computing transaction costs according to the Almgren model; note that transaction volumes above this
range are often larger than the regime of reliable accuracy of the model. Despite potential non-convexity
of rewards, our results suggest that OGD-M with appropriate cost penalties may generally be more useful
in practice than FTPL-M while still outperforming other baselines. Empirically, the runtime for each trial
of FTPL-M scales as O(T 2), owing to the computational bottleneck of averaging gradients across each past
reward function, and further there is substantial variance across runs; results for FTPL-M at W0 = 1e9 and
sampling-based Hedge (where a single stock is chosen each round) across all W0 values were significantly
worse than the other baselines and are omitted.
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Figure 1: Optimizing over learning rates for OGD+M

Figure 2: Initial wealth vs. algorithm performance
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Online Portfolio Selection with Adversarial Transaction Costs:
Supplementary Materials

7 Proofs for Section 3

7.1 Additional Details for Theorem 1
To complete the proof, we discuss how the monotonicity assumption enables bounding each fractional portfolio’s
incurred per-round per-unit rebalancing cost in terms of ct(x

(k),x(k)). Given a portfolio xt fractionally
allocated across initial portfolios x(k), we first can have these portfolios “trade amongst themselves” for free
without incurring transaction costs (as in Blum and Kalai [1997]) to reduce the total volume of market
transactions, as we assume transaction costs are non-negative (although this does not affect worst-case
guarantees). Then, we schedule rebalancing trades for buying or selling an asset j on a per-asset basis (as
permitted by Assumption 1) for each portfolio x(k) in proportion with the fraction of that portfolio which
needs to be traded in or out of that asset (ignoring that portfolio’s relative volume), e.g. each portfolio buys
or sells a τ fraction of its holdings in some asset j in a round-robin fashion until its rebalancing for that asset
is complete. By splitting trade sizes across portfolios x(k) in this manner for arbitrarily small τ , this ensures
that the cost paid by a fractional portfolio x(k) to buy (or sell) an asset j is below the cost it would pay in
the event that the entire holdings were concentrated on x(k) (up to τ), as marginal cost is increasing on a
per-unit basis.

8 Proofs for Section 4

8.1 Additional Details for Theorem 2
We recall the result from Suggala and Netrapalli [2019] for Follow the Perturbed Leader (FTPL); this is
equivalent to our algorithm when ft(xt, . . . , xt−m) = f̃(xt) for all t and xt.

Proposition 3 (Theorem 1 from Suggala and Netrapalli [2019]). Given access to an oracle Oα,β with
α = O(

√
1/T ) and β = O(1/T ), FTPL obtains expected regret

E[Reg(T )] = O

(
ηn2L2T +

n

η

)
with respect to the optimum x∗ ∈ X over non-convex Lipschitz losses f̃t.

We also recall the following stability result used in the analysis of Suggala and Netrapalli [2019], wherein
the expected distance between subsequent points xt is bounded.

Proposition 4 (Stability Lemma from Suggala and Netrapalli [2019]). When running FTPL as above,
consecutive points satisfy:

E[∥xt −xt−1∥] = O

(
ηn2L+

βn

ηL

)
.

Suppose we have β = O(T−1m−2). We can then bound the regret of FTPL-M for losses with memory in
terms of the error between true and surrogate losses:

Reg(T ) ≤ max
x∗∈X

T∑
t=m

f̃t(xt)− f̃t(x
∗) +

T∑
t=m

∣∣∣f̃t(xt)− ft(xt, . . . ,xt−m)
∣∣∣

≤ O

(
ηn2L2T +

n

η

)
+m2L

T∑
t=m

[∥xt −xt−1∥

= O

(
ηn2L2T +

n

η

)
+O

(
ηn2m2L2T +

βnm2T

η

)
= O

(
mn1.5L

√
T
)
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upon setting η = 1
Lm(nT )0.5 .

8.2 Additional Details for Corollary 2.1
Here we prove a Lipschitz condition on reward functions satisfying the given conditions on returns and costs.

Lemma 5. Suppose each return vector rt lies in [1/R,R]n for some R ∈ R+, and that each ct(xt,xt−1) is
C-Lipschitz in both xt and xt−1 (with respect to the ℓ1 norm). Then:

• each ft(xt,xt−1) is (R2 + 2C)-Lipschitz in xt and 2C-Lipschitz in xt−1 over ∆(n), and

• each f̃t(x) is (R2 + 4C)-Lipschitz in x over ∆(n).

Proof. First consider the concave function log(r⊤t xt) in isolation. Each partial derivative is given by

∂

∂ xt(i)
log(r⊤t xt) =

rt(i)

r⊤t xt
,

yielding

∇ log(r⊤t xt) =
rt

r⊤t xt

as the gradient. The quantity r⊤t xt lies in [1/R,R] for xt ∈ ∆(n) and so ∇ log(r⊤t xt) ∈ [1/R2, R2]n for any
xt; as such, log(r⊤t xt) is R2-Lipschitz with respect to the ℓ1 norm.

Next, given that ct(xt,xt−1) is C-Lipschitz in both xt and xt−1, we have that ct(x,x) is 2C-Lipschitz in
x. As such, for the function log(1− ct(x,x)) we have that

∇x log(1− ct(x,x)) = − ∇xct(x,x)

1− ct(x,x)
,

and so log(1 − ct(x,x)) is 4C-Lipschitz as 1 − ct(x,x) ≥ 1
2 . By a symmetric argument, we have that

log(1 − ct(xt,xt−1)) is 2C-Lipschitz in both xt and xt−1 as well. Summing Lipschitz terms yields the
result.

The corollary then follows by plugging this bound in to Theorem 2 with m = 1.

9 Proofs for Section 5

9.1 Proof of Theorem 3
Here, we assume the same conditions as in Section 4 (that returns lie in [1/R,R], and that costs are C-
Lipschitz and bounded away from 1), and focus primarily on rates in terms of T (all other dependencies will
be polynomial). As such, both rewards and switching costs are bounded when casting this as an instance of
expert prediction with switching costs. The theorem then follows from the existence of algorithms which
simultaneously satisfy regret and switching number O(

√
T ) [Geulen et al., 2010, Cesa-Bianchi et al., 2013,

Gofer, 2014].

9.2 Proof of Corollary 3.1
Consider the following assumption on reward functions:

Assumption 2. For each rt and ct, the function log(r⊤t x) + log(1− ct(x,x)) is convex in x.

When this holds, we can apply result of Anava et al. [2015] for OGD-M directly to the (strongly) convex
surrogate losses in our setting. Here we consider Lipschitz conditions in terms of the ℓ2 norm, adding at most
a
√
n factor to the bound from 5.
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9.3 Proof of Theorem 4
We can apply a similar analysis as that in Lemma 5 to show that the joint reward function has Lipschitz
gradients, as the log function has Lipschitz gradients when inputs are bounded away from zero. By Lemma 2,
for sufficiently large µ we have that each joint surrogate reward function is strongly convex, and thus we can
apply Corollary 3.1 to obtain the result.

10 Additional Details for Experiments
We implement our algorithms using standard numerical optimization libraries in Python; we write our reward
functions and compute their gradients using Autograd, and we use SLSQP as our oracle for FTPL-M. Each
trial consists of running an algorithm over 20 randomly chosen S&P500 stocks over 1000 days (starting on
January 1, 2010). On a 2021 Macbook Pro, trials for each algorithm besides FTPL-M run in under 20 seconds;
trials for FTPL-M take approximately 10 minutes. Results for each configuration shown are averaged across
10 trials.
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